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Abstract

This document describes one of Return To Castle Wolfenstein’s

model file formats: the MDC. It is used mostly for storing minor

models like heads and other, less dynamic game parts. A specialty

of this format is that it allows compression of vertex based animation

and therefor saving space.

The MDC format can be seen as successor of Quake’s MD3, al-

though, in Return To Castle Wolfenstein, the character animation is

stored in another format: the MDS, which is not topic of this docu-

ment.

Note: This is an unofficial document and neither supported, nor

approved by official side. All copyrighted items that may appear in

this document stay property of their legal owners.
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1 Introduction

1.1 Acknowledgements

This document is so to say the combination of information gathered from
various sources concerning the Return To Castle Wolfenstein MDC file for-
mat.

The main facts come from Chris Cookson’s “Return to Castle Wolfenstein
MDC Importer”.1 This is also the source of most of the names mentioned
here.

The base normal encoding algorithm was taken from the Quake 3 Arena
Tool Source.2 Especially the somehow misleading naming “longitude” and
“latitude” for the spherical normal angles come from this code.

The compressed normal vector part of this document was done by myself
using some statistical methods. Of course I am a bit proud of this.

1.2 Open Issues

The following section addresses issues that are not cleared up right now. Any
suggestions would be gladly appreciated.

1.2.1 Naming

What do the terms MDC MDS and MD3 mean anyway?
I could guess MD stands for Model Definition and the last letter 3, C or

S are something like versions, but that’s all speculation.

1.2.2 Basic Data Type

The size of the basic data type is for sure 32 bits (least significant byte first).
The question is whether it’s signed or unsigned. Some MD3 implementations
use the int or long (signed), others use unsigned long.

Because I’ve never seen any number larger than 231 this isn’t too im-
portant although it might cause severe errors when larger numbers appear
somewhere.

1.2.3 Base Scaling

Usually, float base coordinate values are stored integrally as shorts in order to
save space. To allow storing of non integral types, these values are multiplied

1http://mojo.gmaxsupport.com/Sections/MaxScripts.html
2http://www.planetquake.com/quake3/files.shtml
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by a scaling factor, which shifts the binary comma. For regaining the original
values, the inverse scaling has to be applied.

This could simply be done by multiplying the integral values from the
file with some scaling factor. 1

64
seems to be a good multiplicator, as the

MD3 uses this value too. This is proved by the fact that you usually receive
the bounding box values of a frame by dividing the maximum and minimum
(unscaled) coordinates on each axis for this particular frame by 64.

1.2.4 Delta Scaling

Simply adding the delta frames to their base frames doesn’t seem to perform
so right. Usually such an approach moves the animated parts not far enough.
For example, the mouth of a head doesn’t open wide enough to form some
speech.

This suggests that there is another scale factor to be applied. A good
value seems to be 4.

1.2.5 Unknown Fields

There are fields in the data structures that couldn’t be assigned a purpose.
Usually those fields have the same number for all different MDCs.

1.3 Contacts

For suggestions, found errors and something like that see:

http://www.planetwolfenstein.com/themdcfile

or email to:

Wolfgang Prinz
wpATplanetwolfenstein.com (substitute AT with @)
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2 Primary File Structures

Like most data files, the MDC File starts with a so called file header. The
header provides information about where further data structures can be
found in the rest of the file.

2.1 FileHeader

The FileHeader starts exactly at the beginning of the file.

typedef struct Fi leHeader
{

unsigned long u l Ident ;
unsigned long u lVers ion ;
unsigned char ucName [ 6 4 ] ;
unsigned long u lF lags ;
unsigned long ulNumFrames ;
unsigned long ulNumTags ;
unsigned long ulNumSurfaces ;
unsigned long ulNumSkins ;
unsigned long ulOffsetBorderFrames ;
unsigned long ulOffsetTagNames ;
unsigned long ulOffsetTagFrames ;
unsigned long u lO f f s e t Su r f a c e s ;
unsigned long ulOffsetEnd ;

} Fi leHeader ;

ulIdent should be ”IDPC” - this is the File Identification.

ulVersion should be 2, which means version 2.

ucName the file’s name (sometimes with path and extension).

ulFlags ??? - unknown (seems to be 0) Could be some file related flags.

ulNum* gives the number of * objects in the file (there are ulNum* objects
at the appropriate offset).

ulOffset* is the offset (in bytes) of object * counting from the beginning of
the file.

ulOffsetEnd is the offset to the first byte that does not belong to the file
anymore (in other words - the file’s size).
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2.2 BoundingFrames

A bounding box describes the outline box of a single animation frame. No
Vertex should be out of this border.

typedef struct MDCPoint
{

f loat x ;
f loat y ;
f loat z ;

} MDCPoint ;

struct MDCFrame
{

MDCPoint bboxMin ;
MDCPoint bboxMax ;
MDCPoint l o c a lO r i g i n ;
f loat rad iu s ;
char name [ 1 6 ] ;

} ;

bboxMin is the bottom left corner of the bounding box.

bboxMax is the top right corner of the bounding box.

localOrigin defines an offset added to all vertices (even the bounding box
itself). It simply translates the whole model. This becomes important
when this model is tagged to an MDS.

radius ??? - unknown - perhaps the radius of this frame.

name is the name of this frame.

Note: These coordinates here are not scaled (like the integral base frame
coordinates) because they are stored directly as floating point values.

2.3 Tags

Tags are connections between the outer world and the MDC. For example,
the head tag matches to the corresponding head tag in the corresponding
MDS saying that the head should be put on that position.
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typedef struct TagName
{

unsigned char ucName [ 6 4 ] ;
} TagName ;
typedef struct TagFrame
{

typedef struct TagPosit ion
{

unsigned short x ;
unsigned short y ;
unsigned short z ;

} TagPosit ion ;
typedef TagPosit ion TagAngle ;

TagPosit ion tpPos i t i on ;
TagAngle taAngle ;

} TagFrame ;

Every tag consists of a Tag Name and a Tag Frame, which are, for some
reason, stored separately.
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3 Surface Structures

This is where the vertex and texture coordinates are stored. A surface de-
scribes a continuous area on the model. For example, in the heads there is
one surface for the head itself, the teeth (upper and lower respectively), the
inner side of the mouth, and so on.

3.1 Surface Header

The header of the surface (similar to the FileHeader).

typedef struct SurfaceHeader
{

unsigned long u l Ident ;
unsigned char ucName [ 6 4 ] ;
unsigned long u lF lags ;
unsigned long ulNumCompFrames ;
unsigned long ulNumBaseFrames ;
unsigned long ulNumShaders ;
unsigned long ulNumVertices ;
unsigned long ulNumTriangles ;
unsigned long u lO f f s e tT r i ang l e s ;
unsigned long u lOf f s e tShade r s ;
unsigned long ulOffsetTexCoords ;
unsigned long u lOf f s e tBaseVer t s ;
unsigned long ulOffsetCompVerts ;
unsigned long ulOffsetFrameBaseFrames ;
unsigned long ulOffsetFrameCompFrames ;
unsigned long ulOffsetEnd ;

} SurfaceHeader ;

ulIdent ??? - unknown (seems to be 7).

ucName is the surface’s name (e.g. “teeth up”).

ulFlags ??? - unknown (seems to be 0).

ulNum* is the number of * objects located at the corresponding offsets.

ulOffset* is the offset of * counted from the start of this surface (not the
beginning of the file).
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ulOffsetEnd is the first byte of the next surface in the surface list counted
from the start of this surface (remind that the space between the surface
offset and ulOffsetEnd does not necessarily contain all surface data, but
it’s sure that ulOffsetEnd points to the next SurfaceHeader).

3.2 Triangles

The smallest 3D unit. Indices three Vertices in the form of a triangle list
(which means that each “triangle” has three own vertices - its not a triangle
fan or strip).

Note: This triangle list is responsible for all frames. Only vertex positions
change during animation scaling or translating the triangles, but the triangle
indices are not changed. All frames (of a single surface) are using the same
triangle list (but they use different vertex sets for this list per animation
frame).

typedef struct Tr iang l e
{

unsigned long ulVertex1 ;
unsigned long ulVertex2 ;
unsigned long ulVertex3 ;

} Tr iang l e ;

ulVertex1 indices the first vertex of this triangle.

ulVertex2 indices the second vertex of this triangle.

ulVertex3 indices the third vertex of this triangles.

The order of these three vertices is considered to be clockwise for defining
the front face of the triangle.

3.3 Shaders

A shader holds the name of the texture of a surface. Because of skinning
(which allows to “dress” one model with different “skins”) the ucName does
not always reflect a valid picture file in the file system. If there is a shader as
well as a skin defining the texture file for a certain surface, the skin always
wins.

typedef struct Shader
{

unsigned char ucName [ 6 4 ] ;
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unsigned long u lF lags ;
} Shader ;

ucName is a string giving the name of the texture file.

ulFlags ??? - unknown

3.4 Texture Coordinates

Every vertex has a pair of values between 0.0 and 1.0 that tells the renderer
which point of the texture should be mapped onto this pixel. Simply think
of a glove (the texture - a 2D bitmap) that is pulled over your hand (the
model) which itself consists of atoms (the vertices). Because we are in 3D,
you cannot simply pull over the glove, but you have to give every single
vertex the coordinates of a point on the glove. The rendering engine then
interpolates the area between these vertices by using the color data from the
texture.

typedef struct TexCoord
{

f loat s ;
f loat t ;

} TexCoord ;

s is the x coordinate of the texture point counted from the left of the texture.

t is the y coordinate of the texture point counted from the top of the texture.

3.5 Base Vertices

The FrameBaseFrames is an array of numFrames unsigned short values. They
are indices pointing to a BaseFrame.

Every BaseFrame contains numVertices BaseVertex elements. At offset-
BaseFrames, there are numBaseFreames of such BaseFrames.

Note: It is possible that more than one FrameBaseFrame index points to
the same BaseFrame.

typedef struct BaseVertex
{

signed short x ;
signed short y ;
signed short z ;
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unsigned short normal ;
} BaseVertex ;

x is the x coordinate of that vertex.

y is the y coordinate of that vertex.

z is the z coordinate of that vertex.

normal is the normal vector encoded, like the Quake MD3 normal vectors,
in spherical coordinates.

3.6 Compressed Vertices

Similar to the BaseFrames, there exists a table of indices, the FrameCom-
pressedFrames, pointing to the CompressedFrames.

At offsetCompFrames, there are numCompFrames CompFrames each of
them consisting of numVertices CompVertices.

Those CompVertices are compressed in order to save space. See section 4
and section 5 for more details.

typedef struct CompVertex
{

unsigned char x ;
unsigned char y ;
unsigned char z ;
unsigned char n ;

} CompVertex ;

x is the x coordinate difference.

y is the y coordinate difference.

z is the z coordinate difference.

n is the normal difference vector.

The term “difference” means that only the difference between the result-
ing frame (as can be seen by the user) and the base frame is stored. The
intention behind this is to save space. It is assumed that successive frames
differ only slightly, so only small data types are required to store those dif-
ferences.
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4 Compressed Frames

As you can see above, neither base nor compressed vertices are float values,
which are required by rendering engines. In order to receive float vertices
and normals, the values taken from the Base- and CompFrames have to be
converted.

4.1 Building Vertices

The desired vertex vector v of an arbitrary frame vertex can be obtained by
adding the difference vector vdelta, if any, and the local origin vector vlocal origin

to the base vector vbase.

v = vlocal origin + vbase + vdelta

If there is no compressed frame, which is indicated by the value 0xFFFF

in the FrameCompressedFrames table, ∆v is set to zero (is not added).
The local origin vector vlocal origin is already given in world coordinates

(floats) by the Bounding Frame data structure’s localOrigin.

vlocal origin = localOrigin

The base frame vector vbase can be obtained by dividing the integral base
frame vector BaseV ertex by 64.

vbase = BaseV ertex ·
1

64

The delta vector vdelta can be received by subtracting 127 from every
CompV ertex coordinate and applying some scaling. This scaling consists of
the already used base vertex scale factor 1

64
and an enlargement factor of 4

(which seems to be appropriate).

vdelta =



CompV ertex −





127
127
127







 · 4 ·
1

64

Summarized, the desired vertex vector v can be obtained by using:

v = localOrigin +
1

64
·







BaseV ertex +



CompV ertex −





127
127
127







 · 4







12



4.2 Building Normals

Normals are usually used by the rendering engines to create realistic light
effects and shading. For this, every single vertex is assigned a normal vector
(also called surface normal). This vector is normal to the surface that this
vertex describes with its neighbors. A normal vector is supposed to point
away from the outside of the surface.

4.2.1 Theory

As a normal vector only defines the normal direction of a surface, its length is
unimportant. Usually, normal vectors have a length of one. Therefor, normal
vectors are stored in spherical coordinates, which give the opportunity to omit
the length of the vector and therefor save space.

Commonly, spherical coordinates are measured as longitude, latitude and
radius. Longitude and latitude are angles, whereas radius is a metric value.
This coordinate system is used to determine points on the earth’s surface.
Longitude is the angle turning from the prime meridian towards east and
latitude measures the angle from the equator due north or south.

In an MDC (and MD3), the latitude is measured differently. It describes
an angle turning from the north pole towards the south pole. In order to
avoid confusion, this latitude will be called ρ (“rho”) and the longitude will
be renamed to σ (“sigma”).

4.2.2 The MDC Normal Coordinate Space

Applied to the cartesian coordinate space of the MDC, ρ turns from the
positive z axis towards the x axis (and further). Therefor ρ operates in
the xz plane. It usually has a range of ρ ∈ [0◦ · · · 180◦] (although the used
encoding would allow bigger values).

The σ angle turns from the positive x axis towards the y axis (and
further). Therefor σ operates in the xy plane. It usually has a range of
ρ ∈ [0◦ · · · 360◦).

Now, with given ρ and σ, the desired normal vector can be computed by
rotating the z unit vector by ρ around the y axis towards the x axis. Then the
resulting vector is rotated by σ around the z axis from the xz plane towards
the y axis.

4.2.3 Base Normal Encoding

The ρ and σ values of the base frames are not stored as floating point values,
but as single bytes. The possible angle range of 360◦ is linearly mapped to
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the possible byte range of 28 = 256 values.
The least significant byte of the normal field of a BaseVertex is the en-

coded ρ, whereas the most significant byte symbolizes σ.
Given the unsigned char Byte, the angle Angle (in degrees) can be cal-

culated using

Angle = Byte ·
360◦

256

Note: Here, the angles are measured in degrees, but in reality it would
be better to measure them in radiants because most mathematical libraries
work only with radiant angles.

4.2.4 Final Normals

Again, to get the final normal of a certain animation frame, the base and the
compressed normals have to be added together by means of vector addition.

This is most easily done in cartesian coordinate space. So the base normal
(ρ, σ) has to be converted to (x, y, z) using

x = cos(σ) · sin(ρ)

y = cos(σ) · sin(ρ)

z = cos(ρ)

Vector addition is performed by simply adding the x, y and z components
of both vectors respectively.

How the compressed normal vector can be formed is discussed in section 5.

14



5 Compressed Normals

The encoding of the compressed normals is a bit more complicated. That’s
why this is described in an own chapter here.

Like the uncompressed normals, the compressed ones encode a vector in
spherical form too. The final normal seems to be an addition of the base and
the compressed normal vectors.

Remember how sperical coordinates are mapped to cartesians: First, the
z unit vector is rotated along the y axis towards the x axis by the angle of ρ

(“rho”). Then the resulting vector is rotated around the z axis towards the
y axis by σ (“sigma”).

Unfortunately the encoding of these two values ρ and σ into one single
byte is a bit more sophisticated than the delta compression of the x, y and z
coordinates. In the following text, let n be the normal part of the compressed
vertex. As n has a size of one byte it ranges from 0 to 255. Also, let ρ be an
angle from 0◦ to 180◦ and σ be an angle from 0◦ to 360◦ degrees.

As the compressed parts in an MDC file mostly describe head or, more
accurate, mouth animations, rotation around the y axis will happen more
often than rotation around the other two axis. Remember how a human
head is positioned in the cartesian coordinate space. Face and nose point
along the positive x axis, the hair points upwards, along the positive z axis,
and the left ear points along the positive y axis. So “talking” will result in
rotating pixels near to the x axis, the “mouth”, up and down the z axis and
therefor rotating their normals with them.

This seems to be the reason why the σ values are not evenly distributed
over n. Around a ρ of 90◦ the corresponding σ is finely grained whereas on
the poles at 0◦ and 180◦ σ is only coarse grained.

In the following, the term ρ-range identifies a certain sub interval of the
possible ρ values. The term σ-interval refers to a certain interval of the σ

values.

5.1 Rho Ranges

The range of possible ρ values is divided (sub sampled) into 15 disjoint in-
tervals, the ρ-ranges, of nearly equal size.

The boundaries νi (in degrees) of these ranges can be calculated by

νi =
180◦

16
· i +

1

2
·
180◦

16

where i goes from 1 to 14.
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ρ-ranges [◦] ρ median [◦] σ width NullOffset

(0 · · · 16.875] 11.25 4 252
(16.875 · · · 28.125] 22.5 8 244
(28.125 · · · 39.375] 33.75 12 232
(39.375 · · · 50.625] 45 16 216
(50.625 · · · 61.875) 56.25 20 196
[61.875 · · · 73.125) 67.5 24 172
[73.125 · · · 84.375) 78.75 28 144
[84.375 · · · 95.625) 90 32 0
[95.625 · · · 106.875) 101.25 28 32
[106.875 · · · 118.125) 112.5 24 60
[118.125 · · · 129.375) 123.75 20 84
[129.375 · · · 140.625) 135 16 104
[140.625 · · · 151.875) 146.25 12 120
[151.875 · · · 163.125) 157.5 8 132

[163.125 · · · 180) 168.75 4 140

Table 1: The ρ-ranges and their medians.

Interestingly, those values νi are neither all upper nor all lower bounds.
In fact, the first 4 are upper, and the last 10 are lower boundaries.

Table 1 depicts which ρ values belong to which ρ-range. The ρ medians
are the ρ values in the middle of each ρ-range an can be calculated using

ρ median =
180◦

16
· i

where i goes from 1 to 15.
Note: “(” and “)” mean that a certain value doesn’t belong to the ρ-range

anymore, whereas “[” and “]” signal that this value is the first or last one
belonging to that range.

5.2 Sigma Intervals

The complexity rises with the σ-intervals. A σ width is assigned to every
ρ-range telling how many numbers of n are spent to encode the σ angle.

For example, a σ width of 16 means that there are 16 different σ-intervals
allocated for that particular ρ-range.

The boundaries µi of the σ-intervals can be calculated using

µi =
360◦

σ width
· i −

1

2
·

360◦

σ width
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where i goes from 0 to σ width.
Note: A negative value of σ can be interpreted as 360◦ minus the absolute

value of that σ.
The σ-intervals then have the ranges:

[µi · · ·µi+1)

with i going from 0 to σ width − 1.
The σ medians of the σ-intervals can be calculated using

σ median =
360◦

σ width
· n′

where n′ goes from 0 to σ width − 1.

5.3 NullOffsets

In order to compile the ρ-ranges and corresponding σ-intervals into n, the
σ-interval’s index value n′ is added to the ρ-ranges NullOffset.

The NullOffset is just a running sum over the σ-widths starting at the
interval with the largest width (at ρ = 90◦) counting upwards and then
wrapping around. Table 1 demonstrates this.

5.4 Converting from normal to n

Given a certain normal (ρ, σ), the first thing to do is match ρ to a ρ-range.
This gives the NullOffset and the σ-width. The σ-interval’s index value n′

can then be calculated matching σ against the boundaries µi.
Then n can be obtained with

n = NullOffset + n′

5.5 Converting from n to normal

First, the ρ-range has to be determined by matching n against the NullOff-
sets. The destination ρ value is then the median of the ρ-range.

The σ-interval’s index value n′ can be calculated using

n′ = n − NullOffset

Again, the destination σ value is the median of the σ-interval and can be
calculated with

σ =
360◦

σ width
· n′
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Note: This conversion can dramatically be improved by using a lookup
table. This table simply contains the (ρ, σ) medians or, better, the (x, y, z)
values for every possible n, which is ranging from 0 to 255. A good start for
such a lookup table is table 1.

18



6 Conclusion

This document showed how to read and interpret the model data found in an
MDC file. It was intended to help people developing plugins for 3D editors
or simialr things.

Unfortunately there has never been much official respondence to questions
concerning the game engine. To my knowledge, all source code releases so
far were only about the user interface engine. Therefor all information here
is only as accurate as it could be without knowing engine implementation
details.

The first parts of this document are heavily bases upon my knowledge of
the topic gathered from Chris Cookson’s gmax script. The research about
compressed normal vectors was done by myself in painstaking programming,
graph plotting and calculator typing sessions.

Although this information here is not official, it seems to be more or less
accurate anyway. I have tried out viewing a lot of MDCs using the techniques
described in this document and it seems to fit quite well.

Hopefully, this document can be of help to someone.
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